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Abstract: Mammalian genomic DNA methylation represents a key epigenetic modification and its
dynamic regulation that fine-tunes the gene expression of multiple pathways during development. It
maintains the gene expression of one generation of cells; particularly, the mitotic inheritance of gene-
expression patterns makes it the key governing mechanism of epigenetic change to the next generation
of cells. Convincing evidence from recent discoveries suggests that the dynamic regulation of DNA
methylation is accomplished by the enzymatic action of TET dioxygenase, which oxidizes the methyl
group of cytosine and activates transcription. As a result of aberrant DNA modifications, genes are
improperly activated or inhibited in the inappropriate cellular context, contributing to a plethora of
inheritable diseases, including cancer. We outline recent advancements in understanding how DNA
modifications contribute to tumor suppressor gene silencing or oncogenic-gene stimulation, as well
as dysregulation of DNA methylation in cancer progression. In addition, we emphasize the function
of PARP1 enzymatic activity or inhibition in the maintenance of DNA methylation dysregulation.
In the context of cancer remediation, the impact of DNA methylation and PARP1 pharmacological
inhibitors, and their relevance as a combination therapy are highlighted.

Keywords: DNA demethylases; DNA demethylases inhibitors; PARP1; poly(ADP-ribose); DNA
methylation; tumor suppressor gene; oncogene; tumor progression; cancer cells

1. Introduction

Epigenetic processes are functional chromatin alterations that occur as a result of
heritable changes in the genes or genome that are not caused by changes in the nucleotide
sequences. These precise epigenetic markers undergo dynamic alterations during develop-
ment and cellular differentiation, which eventually aid in the maintenance and generation
of diverse types of cells in an organism [1]. Epigenetic processes play a part in the various
phases of cell differentiation as set out by the precursor or primary cells; cells have a DNA
sequence similar to that of primary cells, which also give them long-term cellular memory
for cell differentiation. Epigenetic modifications are likely to have a substantial influence
on the onset and progression of many diseases. Epigenetics has added unique insights to
disease traits that cannot be explained by genetic or environmental causes, enriching hu-
man disease knowledge. Epigenetic changes are being utilized to understand several basic
features of complex diseases, such as late-onset of and variations in disease symptoms [2,3].

The dynamics of DNA methylation are an important epigenetic signature that has been
widely researched among epigenetic processes. In recent years, DNA methylation and its
dynamic control have been extensively integrated into modern epigenetic encoding models.
In mammals, epigenetic modifications of DNA predominantly involve the addition of a
methyl group of the cytosine base to carbon five before guanine, subsequently generating
5-methylcytosine (5mC). In mammals, the majority of DNA methylation materializes in
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the background of the CpG-dinucleotide framework (characterized by cytosine, guanine
and the phosphate group between them). CpG islands are high-density CpG-dinucleotide
units found in interspersed areas, primarily in the promoter and regulatory regions [4–8].
The human genome has about 29 million CpG sites, with nearly 60–80% of them being
methylated in normal somatic cells [9]. Surprisingly, CpG sites are not uniformly distributed
throughout the genome; in contrast, the majority of the genome is devoid of CpG sites, with
just one-fifth of the predicted ratio of CpG dinucleotides being present [8]. The majority of
CpG islands often span gene promoters and housekeeping genes and are 500–1000-base-
pair (bp) long [10]. Significantly, DNA methylation occurs in 70% of all CpG dinucleotides
and 40% of genes with CpG-rich islands in the genome [5,11]. Numerous methyl-binding
proteins recognize methylated CpGs as binding sites that participate in the recruitment
of chromatin-remodeling protein or machinery, thereby facilitating gene silencing and
inactivation, and chromatin condensation [8,12–14]. Methylation on non-CpG regions has
also been described to be affecting DNA–protein interactions, chromatin structure and
stability, and gene regulation [15]. Non-CpG methylation (CpH, where H = A, C, or T) has
also been reported in oocytes, human embryonic stem cells and neurons [16–20].

For dynamic chromatin modification, the connection among gene regulation, his-
tone modification and DNA methylation is highly coordinated and synchronized [21–24].
Poly(ADP-ribosyl)ation is a catalytic activation of PARP1 that occurs when it catalyzes the
addition of ADP-ribose (ADPr) to a pre-existing chain of poly(ADPr) of target proteins,
including itself via auto-poly(ADP-ribosyl)ation [25,26]. The activity of PARP1 is engaged
in several biological and cellular functions, including histone or chromatin alterations and
consequent gene expression modulation. However, the epigenetic mechanism of PARP1
differs from that of DNA methylation because it also enzymatically opens condensed chro-
matin in advance of transcriptional activity [27,28]. The current review expands on PARP1’s
potential importance as a new therapeutic target for clinical applications by expanding its
numerous roles linked with DNA methylation in normal and cancer cells.

2. Dynamic Behavior of DNA Methylation and Demethylation

In mammals, cytosine methylation is mostly limited to the symmetrical CpG frame-
work [19,29]. To inactivate transcription, methylation is most commonly found in the
CpG islands of target-gene promoter–exon regions. Particularly, CpG islands are found
in the promoters of half of all genes [30]. In contrast to CpG-island promoters and shores,
gene bodies tend to have a considerate amount of 5mC, which corresponds to active gene
expression [10] (Figure 1). CpG-deficient regulatory areas, such as tissue-specific enhancers,
are classified as lowly methylated regions, with average DNA-methylation frequencies
varying from 10 to 50% [31] (Figure 1). At verified promoter–enhancer pairings, DNA
methylation levels in the enhancer region have been linked to gene activity, with a low level
of 5mC indicating greater gene expression [10,32]. CpG dinucleotides have a low incidence
in the human genome, but they are interspersed with sections with high numbers of these
sequences that are linked to gene regulatory regions [33]. Particularly, CpG sites are usually
methylated across the genome, although sites within CpG islands are not methylated unless
the corresponding gene is silenced. DNA methylation has been connected to non-reversible
events, including imprinting, dosage compensation, or the silencing of developmentally
regulated genes with cell differentiation, as well as a potentially damaging transposon and
virally inserted sequences [8,34].
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Figure 1. The difference in differential DNA methylation in normal and cancer cells. In PARG or
homologous DNA-repair-defective cancer cells the enzymatic activity of PARP1 is increased; therefore,
auto-poly(ADP-ribosy)lated PARP1 moves away from the pre-occupied promoter of oncogenes
and provides the access to transcription machinery for expression. In downstream, it facilitates
DNA hypomethylation at the promoters of oncogenes and make them transcriptional active De
novo DNA methyltransferases (DNMTs) promote DNA methylation by catalyzing the transfer of a
methyl group from donor S-adenosyl-l-methionine (SAM) to cytosine bases to produce 5mC. The
DNMT family consists of five members—DNMT1, DNMT2, DNMT3A, DNMT3B and DNMT3L
(Figure 2A) [35,36]. Interestingly, DNMTs’ important actions during DNA methylation may be
divided into two categories, methylation maintenance and de novo methylation. DNA methylation
is predominantly maintained by DNMT1, which facilitates copying DNA methylation patterns
during DNA replication in the S phase of mitosis and meiosis [37]. The epigenetic mark can then
self-replicate because of DNMT maintenance, which recognizes mono-methylation and methylates
the CpG site’s complementary strand, leading to a di-methylated tag. Double-stranded methylation,
during which the two methyl groups accept a syn conformation in the major groove, can modulate
chromatin architecture and regulate gene transcription [38]. DNMT3A and DNMT3B are de novo
methyltransferases; they potentially develop a new DNA methylation signature for unmethylated
CpGs of DNA and are recognized as de novo DNMT enzymes [39,40]. DNMT3A or DNMT3B
catalyzes the methylation of previously unmethylated DNA (de novo methylation) in embryonic
stem cells and tumor cells [41]. DNMT3A and DNMT3B can also aid in the maintenance of DNA
methylation [42,43]. Accumulating evidence suggests that DNMT3L (DNMT3-like) has no catalytic
activity because some crucial motifs have been lost or altered [44]. However, DNMT3L contributes as
an essential cofactor for de novo methyltransferase by expediting the interaction among DNMT3A,
DNMT3B and DNA, and stimulating their activity [39,40,45,46].
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Figure 2. Schematic structure of human DNMT, DNMT3-like, TET family and PARP1 proteins.
(A) DMAP, DMAP1-binding domain; PCNA, Proliferating Cell Nuclear Antigen domain; NLS, Nu-
clear Localization Signal domain; DNMT1-RFD, Cytosine-specific DNA methyltransferase replication
foci domain; Zf-CXXC, CXXC zinc finger domain; BAH, Bromo adjacent homology domain; DCM,
DNA-cytosine methylase; Cyt_C5_DNA_methylase, Cytosine-C5 specific DNA methylases; PWWP,
domain comprising a conserved proline–tryptophan–tryptophan–proline motif; PHD, plant home-
odomain; The sequences are derived from data reported under accession numbers NP_001124295 for
DNMT1, NP_004403 for DNMT2, NP_783328 for DNMT3A, NP_008823 for DNMT3B and NP_037501
for DNMT3L. (B) Domain structures of ten–eleven translocation methylcytosine dioxygenases (TETs).
Schematic representation of conserved domains of human TET proteins is shown, including a double-
stranded-helix (DSBH) fold (all TETs), cysteine-rich (Cys-rich) domain (all TETs) and CXXC zinc
fingers (Zf-CXXC; in TET1 and TET3). The sequences are derived from data reported under accession
numbers NP_085128 for TET1, NP_001120680 for TET2 and NP_001274420 for TET3. (C) Domain
structure of PARP1. PARP1 has four main domains, an amino (N)-terminal DNA-binding domain, an
auto-modification domain, a water-binding domain and a carboxy (C)-terminal catalytic domain. ZFI,
zinc finger I; ZF2, zinc finger II; ZF3, zinc finger III; NLS, nuclear localization signal; BRCT, BRCA1
C-terminal domain; PRD, PARP regulatory domain; ART, ADP-ribosyl transferase subdomain.
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During gametogenesis and shortly after fertilization, DNMT3L works as an accessory
protein for DNMT3A- and DNMT3B-mediated de novo DNA methylation [47]. Inter-
estingly, only germ cells and embryonic stem cells express DNMT3L; however, no such
functions have been reported in somatic cells [48]. DNMT3L, together with DNMT3A and
DNMT3b, is primarily expressed in the postnatal female germline for the development
of DNA-methylation patterns [49]. DNMT3L is implicated in the regulation of repetitive
elements, as well as germ-cell imprinting [47,50]. According to the study, DNMT3L has
two roles in the differentiation of embryonic stem (ES) cells; firstly, it works as a positive
controller of DNA methylation in the housekeeping-gene part and, secondly, it functions
as a negative controller of DNA methylation at bivalent gene promoters [51]. Notably,
DNMT2 (also called tRNA aspartic acid methyltransferase 1 (TRDMT1)) exhibits weak
activity of methyltransferase in vitro and its removal has an insignificant influence on CpG
methylation levels and no apparent effects on developmental phenotypes [52,53]. On the
other hand, the anticodon loop of aspartic-acid transfer RNA is methylated by DNMT2 [54].
Based on genetic factors, DNMT2/TRDMT1-dependent RNA modifications are important
in determining the coding signature of sperm small non-coding RNA, which is required
for paternal epigenetic memory and in the transmission of paternally acquired metabolic
diseases to offspring [44,55].

In comparison to most histone modifications, DNA methylation is rather stable. How-
ever, DNA demethylation (the lack of DNA methylation) has been seen in a variety of
biological and developmental contexts. Demethylation changes to DNA can occur in
two ways, active or passive pathway [56]. In the active DNA demethylation process,
the enzymatic removal of or alteration in the methyl group of 5mC takes place [57].
Passive DNA demethylation, on the other hand, occurs as a result of the loss of main-
tenance methylation [44]. Passive DNA demethylation happens during multiple cycles
of replication due to the absence of efficiently working DNA-methylation maintenance
machinery, for instance, DNMT1 suppression or absence of the DNA hypomethylation
effect. Passive DNA demethylation can also occur during mammalian development, par-
ticularly during pre-implantation development in the maternal genome [44,58,59]. 5mC
demethylation to produce 5-hydroxymethylcytosine (5hmC) commonly primarily involves
5mC oxidation through ten–eleven translocation (TET) methyl cytosine dioxygenases
(Figures 2B and 3). Further, TET enzymes hydroxylate 5hmC to produce 5-formylcytosine
(5fC) and 5-carboxylcytosine (5caC) in a series of steps. Thymine DNA Glycosylase (TDG)
recognizes the intermediary bases 5fC and 5caC and disrupts the glycosidic bond, leading
to an apyrimidinic site. After that, the excision at the base is repaired. In different oxidative
deamination mechanisms, 5hmC can be oxidatively deaminated by AID (activation-induced
cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme catalytic subunit)
deaminases to produce 5-hydroxymethyluracil (5hmU). 5mC can also be transformed into
thymine by activation-induced deaminase (AID) or apolipoprotein B RNA-editing catalytic
components 2b and 2a (Apobec2b, 2a). Methyl-CpG Binding Domain 4 (MBD4), Nei Like
DNA Glycosylase 1 (NEIL1), TDG and Single-Strand-Selective Monofunctional Uracil-
DNA Glycosylase 1 (SMUG1) can all cleave 5hmU. Base-excision repair (BER) enzymes
subsequently repair the apyrimidinic site and T: G mismatches to generate cytosine. The
TET family most frequently demethylates DNA by dioxygenases [60].
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Figure 3. Steps for dynamic modifications of Cytosine and TET-mediated oxidation. (A) The methy-
lation of deoxycytosine (C) residues to 5-methylcytosine (5mC) are introduced by DNA methyl-
transferase (DNMT) enzymes and sequentially oxidized by ten–eleven translocation (TET) enzymes
via 5-hydroxymethylcytosine (5mC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). SAM,
S-adenosylmethionine; SAH, S-adenosylhomocysteine; α-KG, α-ketoglutarate. (B) 5fC and 5caC
are identified and excised by thymine DNA glycosylase (TDG) to produce an abasic site. The
base-excision-repair (BER) pathway implicates excision of the abasic site, replacement of the nu-
cleotide using unmodified deoxycytidine triphosphate (dCTP) by a DNA polymerase (generating
pyrophosphate, PPi) and ligation to repair the nick.

Different TET gene isoforms are expressed in various cells and organs. In the TET
dioxygenase family, a minimum of two TET1, one TET2 and three TET3 isoforms has been
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reported (Figure 2B) [56,61]. Embryonic stem cells, initial embryo stages and primordial
germ cells appear to be the only places where the full-length canonical TET1 isoform is
found. The dominant TET1 isoform in most somatic tissues, notably in mice, derives
from the activation of an alternative promoter, resulting in a truncated transcript and a
smaller protein known as TET1s [62]. TET3 isoforms also include full-length form, TET3FL;
a short-form splice form, TET3s; and another variant reported in neurons and oocytes,
referred to as TET3o. TET3o is generated by a distinct promoter and contains a unique
initial N-terminal exon, which encodes for 11 amino acid residues. There has been no such
report yet that TET3o can be found in embryonic stem cells, other cell types, or adult animal
tissue. TET1 expression is scarcely detectable in zygotes and oocytes, while TET2 has a low
level of expression and the TET3 variation TET3o is almost nonexistent at the two-cell stage.
When exceptionally large-scale rapid demethylations occur in neurons, oocytes and zygotes
at the one-cell stage, TET3o could be the most common TET enzyme used [56,63–67].

3. DNA Methylation and Demethylation in Cancer Progression

Epigenetics is widely documented to play a role in cancer development; a significantly
changed epigenome, such as aberrant DNA methylation and histone modification config-
urations, is now thought to be a typical cancer signature and hallmark. Recent progress
has provided the mechanistic insight of DNA methylation–demethylation dynamics, as
well as their prospective regulatory roles in cellular differentiation and carcinogenic pro-
gression [10,68,69] The phenomena of DNA hypermethylation and tumor-suppressor-gene
(TSG) silencing have attracted the most interest in cancer progression. Hypermethylation
can, in principle, play a critical role in cancer development and progression. Further-
more, hypomethylation is gradually being recognized as a promising pathway for cancer
prometastatic gene activation. The malfunctioning of methylation machinery or of DNMT
enzymes has been attributed to the abnormal DNA methylation topography in cancer cells.
The finding of 5hmC, 5fC and 5caC, on the other hand, has anticipated that a failure of the
demethylation enzymatic system could result in DNA methylation marks asymmetry and
reprogramming [70].

Chemical carcinogens or pathological factors can cause genetic mutations that affect
DNMT functions or expression levels, resulting in genome-wide methylation profile varia-
tions and cancer-stimulating gene-expression alteration, such as reducing TSG expression
while boosting genomic instability and oncogene expression [68,69,71,72]. Accumulating
studies have revealed that gene expression anomalies produced by DNMT activity and
function are linked to the incidence and progression of many malignancies (Table S1).
Hypermethylation and hypomethylation are thought to be separate mechanisms in cancer
that target various programs at different stages of carcinogenesis. Many malignancies
exhibit genome-wide hypomethylation and promoter hypermethylation, which are linked
to carcinogenesis. Hypomethylation across the genome has been linked to an increase in
genomic instability [73,74]. Hypermethylation of CpG islands in gene promoters, on the
other hand, can inhibit TSGs and affect crucial physiological functions, including apoptosis,
angiogenesis, cell cycle, cell adhesion and DNA repair [75]. Notably, it has been reported
that TET protein expression or function is frequently dysregulated in a variety of malig-
nancies. In vivo, TET deficiency is significantly connected to the start and progression of
hematologic malignancies (Table S1). Many forms of malignancies are linked to TET im-
pairments, TET loss-of-function alterations and TET loss of function produced by hypoxia
and other regulatory and metabolic disturbances [76].

4. Poly(ADP-ry)lation of DNMT1 Determines DNA Methylation

PARP1 is a multifunctional-domain protein (1014 amino acids, 113 kDa); its N-terminal
domain (1–353 AA) contains three DNA-binding domains (zinc fingers ZF1, ZF2 and ZF3)
and a nuclear-localization-sequence domain (NLS) (Figure 2C). ZF1 and ZF2 recognize and
bind to damaged DNA sites, while the function of ZF3 is to activate enzymes and NLS
leads newly translated PARP1 to the nucleus. The central automodification domain (389–
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643 AA) is an auto-poly(ADP-ribosyl)ation site for PARP1 and functionally very important,
composed of BRCT (which mediates protein–protein interactions) and WGR (which in-
teracts with ZF1, ZF3 and catalytic domains) domains. The C-terminal catalytic domain
(662–1014 AA) is composed of the NAD acceptor site to perform poly(ADP-ribosyl)ation
enzymatic activity [77].

PARP1 was originally known as a DNA-repair enzyme, as until recent years, other
functions were not known. Now, we know PARP1 controls the transcription regulation [78],
NF-κB-dependent immune response [79], ribosome biogenesis, epigenetic inheritance of
mechanism of gene expression through mitotic bookmarking [80–82] and differential DNA
methylation [83,84]. PARP1 is a protein that catalyzes the transfer of ADP-ribose units
from NAD+ to specific target proteins and controls important physiological processes such
as DNA methylation, DNA damage response, chromatin remodeling and gene expres-
sion. This process, known as poly(ADP-ribosyl)ation, produces one ADP-ribose and one
nicotinamide for every NAD+ molecule processed. The ADP-ribose unit is subsequently
connected to carboxyl groups in the target protein structure by glutamate, aspartate, lysine,
arginine and serine residues [27,85]. When poly(ADP-ribose) (PAR) accumulates, it fea-
tures a strong negatively charged nucleic-acid-like structure [86] and neutralizes positively
charged groups, mediating chromatin de-condensation and stimulating transcription [81].
Among all the PARP1 functions, DNA methylation is not well understood yet. During
carcinogenesis, major DNA methylation change happens globally and certain genes are
targets of aberrant methylation, causing the epigenetic silencing of TSGs (Figure 3). How-
ever, a plausible mechanism published by [87] is that, after auto poly(ADP-ribosyl)ation
of PARP1, poly(ADP-ribosyl)ated covalent chains recruit DNMT1 and block its catalytic
activity, thus preventing aberrant hypermethylation. The mechanisms of DNMT1 recruit-
ment and PARP1 activation at CpG islands remain unknown. Another study has later
confirmed that PARP1 could directly impact DNA methylation patterns governing DNMT1
transcription and activity in mouse primordial germ cells via poly(ADP-ribosyl)ation [88].
Not only PARP1 poly(ADP ribosyl)ates DNMT1 to prevent its function and maintenance of
methylation on newly formed DNA after replication [87], but the auto-poly(ribosyl)ation
of PARP1 also facilitates DNMT1 expression by loosening chromatin or moving away from
the DNA and providing access to transcription machinery [89]. In fact, there is a number of
reports which shows that PARP1 binding to DNA sequences prevents DNA methylation
and poly(ADP-ribosyl)ation has been indeed revealed to maintain the unmethylated status
of regulatory zones of particular genes, including DNMT1, p16 (also known as p16INK4a,
cyclin-dependent kinase inhibitor 2A), SMA (smooth muscle actin), THBD (thrombomod-
ulin), TET1, the DMR1 (differentially methylated region 1) imprinted region, as well as
certain other pluripotency-associated genes [89–97].

The epigenetic function of PARP1 has been revealed that it bookmarks the promoter
of cell-identity genes during mitosis, which is crucial for expression of genes to survive
daughter-cells survival when they enter into G1 [81,82]. It is possible, sequences of these
promoters that remain to protect from methylation due to the presence of PARP1. In
cancer cells, aberrant poly(ribosyl)ation activity or its controlling PARG activity disrupts
DNA methylation; in some cases, it may be hyper- or hypomethylation depending on
the cues that affect the poly(ribosyl)ation of DNMT1 [98]. Poly(ADP ribosyl)ation is
reversible PARP1 enzymatic activity and PARG quickly maintains the homeostasis in
the cell by degrading the PAR chain that prevents the disastrous effect on the cell. In
PARG or homologous DNA-repair-defective cells, the enzymatic activity of PARP1 is
increased and imbalances NAD homeostasis [99,100]. In case of excessive enzymatic
activity, PARP1 poly(ADP ribosyl)ates itself and interacts with DNMT1 to form a complex
and prevent DNMT1 functional activity to methylate DNA [87,89,101]. It leads to a scarcity
of NAD+ levels in cancer cells. It is a well-known fact that excessive PARP enzymatic
activation causes a reduction in NAD+ levels [102]. NAD+ levels may decline to 20–30%
of their previous levels under such circumstances, putting a rate limitation on the sirtuin
enzymes [103]. The enzymatic activities of histone deacetylase (Sirtuins) largely reduce
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in these conditions because Sirtuins compete for NAD+ with PARP1 [104–106] and this is
followed by decreased SIRT1 expression [105]. Moreover, it may facilitate the transcription
initiation of some oncogenes (responsible for cancer progression) by being unable to remove
histone acetylation from already unmethylated genes (Figure 4). In this case, the use of the
PARP1 inhibitor reverts all the functions to suppress the expression of oncogenes [102]. An
increase in PARP1 enzymatic activity leads to inactivate DNMT1 enzymatically and causes
hypomethylation on the promoter or downstream region of genes in normal cells (Figure 5).

Figure 4. Increased poly(ADP-ribosyl)ation precludes DNMT1 and SIRT6 enzymatic activities.
In cancer cells (prostate), the poly(ADP-ribosyl)ation pathway is severely disrupted, resulting in
an enhanced activity that not only poly(ADP-ribosyl)ates PARP1 but also DNMT1; therefore, it
prevents the maintenance of DNA methylation on newly synthesized DNA strands. Scarcity of NAD+

makes SIRT6 enzymatically inactive to remove the acetyl group from histone proteins, eventually
facilitating the transcription of oncogenes. The PARP1 inhibitor reverts all activities, which leads to
the suppression of oncogenes.

The silencing of the DNMT1 gene may be responsible for the global loss of methyla-
tion [87]. However, it opens other pathways to suppress genes by spreading heterochro-
matin (next section). DNA methylation dynamically changes in response to environmental
cues, whereby DNA damages lead to the activation of DNA repair machinery and enzy-
matic activity of repair enzymes, including PARP1. PARP1 controls gene expression in two
ways, i.e., (a) by binding to the upstream or downstream gene and (b) by performing the
poly(ADP-ribosyl)ation of genes. These two pathways are contrasting; PARP1 provides
access to transcription machinery after auto-poly(ADP-ribosyl)ation by leaving the bind-
ing sites of genes, such that genes become transcriptionally active. PARP1 localizes the
DNMT1 promoter in normal cells [89], perhaps identifying and protecting unmethylated
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regions in the genome from methylation, thus contributing to the epigenetic control of gene
expression [87].

Figure 5. Enhanced poly(ADP-ribosyl)ation maintains DNA hypomethylation by activating TET1
functions. PARP1 binds to TSGs in their promoter region in normal cells. In PARG or homologous
DNA-repair-defective cells, the enzymatic activity of PARP1 is increased (although TET1 activates
PARP1 independently of DNA breaks) and poly(ADP-ribosyl)ated TET1 performs its DNA de-
methylation function. It leads DNA hypomethylation on the regulatory regions of genes in cancer
cells. Eventually, it facilitates the expression of TSGs; although this is not quite straightforward in
malignant cells, it is a model to understand the functional dependency of proteins to each other and
it is helpful to develop therapies by taking advantage of them.

5. PARP1 in DNA Hypermethylation and Its Effect on Cancer Progression

TSGs are required for proper cell development because they halt cell division, correct
DNA errors and regulate programmed cell death. TSGs that do not act correctly can
cause cells to develop out of control, leading to cancer. Studies on retinoblastoma, a rare
childhood eye tumor, have led to the discovery of the first TSG [107]. The cell needs
of their respective pathways determine how these TSGs are expressed. Cancer cells, in
particular, lose full control of all genes, including TSGs. TSG function is reduced in all
malignancies by a variety of mechanisms, one of which is excessive DNA methylation.
TET1 restores normalcy by reversing methylation. Excessive poly(ribosyl)ation activity
in cancer cells poly(ADP-ribosyl)ates DNMT1 and renders its activity; TET1 is similarly
poly(ADP ribosyl)ated, which is one of the causes of hypermethylation of DNA in these
cells (Figure 6).



Biomolecules 2022, 12, 417 11 of 28

Figure 6. TET1 stimulates the activity of PARP1 independently of DNA damage. Poly(ADP-ribosyl)ation
of TET1 by PARP1 increases TET1 enzymatic activity and regulates the hydroxylase activity of the DNA
demethylation processes. Poly(ADP-ribosyl)ation of TET1 preserves the unmethylated state and activates
the transcription of oncogenes. The PARP1 inhibitor inhibits the enzymatic activity of TET1, as a result,
the expression of oncogenes is downregulated due to hypermethylation. Availability of NAD+ makes
SIRT6 enzymatically active to remove the acetyl group from histone proteins, further downregulating
the transcription of oncogenes.

5.1. Effect of DNA Hypermethylation on TSG (P53 and NF-κB) Expression

1. P53, one of the major tumor suppressor proteins, and its loss of function by mutations
or loss of expression cause more than 50% of human cancers. P53 also plays a key role
in a multitude of DNA-damage response pathways [86]. It has been reported in several
papers that P53 and PARP1 interact at multiple levels [108]. P53 is not only a covalent
poly(ADP-ribosyl)ation target [109,110], but it also possesses a high-affinity non-
covalent association with poly(ADP-ribosyl) [111]. Dysregulated poly(ribosyl)ation
activity in cancer cells could be one of the possibilities to downregulate P53 expression
via DNA hypermethylation on its gene region.

2. NF-κB, the master regulator, mediates the crosstalk between cancer and inflammation
at multiple levels. Enhanced NF-κB function can cause pro-inflammatory cytokine
production in tumor tissues, which significantly contributes to the pro-tumorigenic
microenvironment [112].

In short, RelA/p65, RelB, c-Rel, p50 (NF-κB1) and p52 (NF-κB2) are members of
the NF-κB transcription-factor family which exist as homo- and hetero-dimers (normally,
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NF-κB, p50 and p65) [113]. The composition of the dimer influences NF-κB enzyme stimu-
lation, DNA-binding efficiency and DNA-sequence preference. In the absence of a signal,
inhibitory proteins (IκBα, β or ε) interact with the dimers of NF-κB and segregate them in
the cytoplasm [114]. The activation of the pathway causes the proteasomal degradation of
inhibitors (IκBα, β or ε) [115], letting the NF-κB dimer enter the nucleus and trigger genes
accountable for targeting cancer cells and pro-inflammatory transcription programs [116].
In response to a signal, PARP1 acts as a unique and essential transcriptional coactivator
of NF-κB in vivo. PARP1’s coactivator action is dependent on direct protein–protein in-
teractions with both NF-κB subunits; extending PARP1 enzymatic activity plays a major
and unique canonical transcriptional coactivatory role for NF-κB-dependent gene regu-
lation [117,118]. In AML cells, the NF-κB pathway is constitutively activated [119]. By
binding to the promoter region of the PARP1 gene and regulating PARP1 gene transcription,
RelA/p65 promotes DNA repair. PARP1 depletion decreases NF-κB function, suggesting
that NF-κB and PARP1 form a DNA-repair positive feedback loop [120].

5.2. Control of DNA Hypermethylation
DNA Methyltransferases Inhibitor

Because TSG hypermethylation is a hallmark feature, much effort has gone into finding
medicines that induce the DNA demethylation of these genes to restore their expression and
function in cancer cells. Growing evidence suggests that inhibiting DNMTs is associated
with decreased tumorigenicity and increased expression of TSGs. As a result, DNMTs are
regarded as promising drug candidates for particular anti-cancer treatments. Nucleoside
analogs decitabine, 5-Azacytidine and zebularine are the three most often used DNMT
catalytic inhibitors, each with a distinct mode of action, discussed below. Several other
subsequent generations of drugs have been discovered and checked for their role in cancer
progression (Table 1).

1. Decitabine

In recent progress, DNA methylation has revealed its importance in the development
of malignancies; this attracted attention, from the chemotherapeutic perspective, on the use
of 5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine) for cancer treatment [121]. Decitabine
(a DNA methyltransferase (DNMT) inhibitor approved by the FDA) is useful for the
reduction in hematological neoplasms [122]. It transforms phosphorylated nucleotides
into active forms, integrates DNA as a cytosine replacement, irreversibly binds to DNMTs
and confines enzymes on DNA. As a result, the DNMT pool is depleted and its function is
inhibited [58,122]. Decitabine at high micromolar dosages promptly causes DNA damage
and cytotoxicity [123,124]. As previously stated, one of the most persistent signatures of
malignancies is DNA hypermethylation on TSGs [125]. It leads to the loss of the regulated
expression of TSGs that facilitates cancer cell growth [126–128].

Decitabine, an epigenetic drug that inhibits DNA methylation and has been licensed
by the FDA, is being used to cure myelodysplastic syndrome (MDS). Several studies are
in progress to treat acute myeloid leukemia (AML) and other malignancies. It helps to
restore TSGs that have been silenced by abnormal DNA methylation, which is prevalent in
all different cancers. It also suppresses DNMT3B expression, a de novo DNA methylating
enzyme [129,130]. AML and MDS have been linked to DNMT3A mutations [131,132]. Both
AML and MDS patients with these DNMT3A mutations have an unfavorable progno-
sis [133]. TNBC (triple-negative breast cancer) is a complex disease with poor survival.
TNBC tumors have a lot of epigenetic biomarker genes with hypermethylated promoters.
Decitabine treatment sensitizes TNBC cells that could be used for second-line treatment
of chemoresistant patients [122,134]. However, only around 40% of Decitabine-treated
AML patients eventually gain benefit from it and, even among responders, recurrence
is common; these cells probably develop drug resistance due to adaptive pyrimidine-
metabolism-network reactions [135].
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2. 5-Azacytidine

5-Azacytidine is a cytosine analog that has been found to promote DNA demethylation
and is a powerful DNA methyltransferase inhibitor. Patients with higher-risk myelodysplas-
tic syndrome (MDS) are treated with 5-azacytidine (Vidaza; Celgene Corporation, Boudry,
Switzerland) [136]; it is also used for a subgroup of acute myeloid leukemia (AML) [137]
and chronic myelomonocytic leukemia (CMML) patients [138]. By suppressing pancreatic-
ductal-adenocarcinoma (PDAC) development in vivo, epigenetic reprogramming with
5-azacytidine induces an anti-cancer strategy in PDAC cells [139]. The de novo DNA
methylating enzyme, DNMT3B, has been revealed to be inhibited by 5-azacytidine [129].

3. Zebularine

Zebularine is a nucleoside analog that, unlike 5-azaC, is chemically stable and orally
accessible. However, it can resolve Aza’s shortcomings, including its cytotoxicity, instability
and short half-life. Zebularine has been shown to inhibit DNMT in a variety of tissues
in vitro and in vivo, including breast cancer, colorectal cancer, lung cancer and prostate
cancer [140–144]. Zebularine can make tumor cells more chemosensitive and radiosensitive.
Zebularine also possesses antimitotic and vascular inhibitory properties. For example,
it stimulates the production of E-cadherin, a cellular gene that is typically suppressed
by hypermethylation in malignancies [145]. Zebularine, in particular, has been shown to
reactivate the silent p16 gene and demethylate its promoter region in T24 bladder cancer
cells [146].

Table 1. Recent update on DNMT inhibitors relatively to the regulation of the different types of
cancer progression.

DNMT Inhibitor Effect on Cancer Progression References

Decitabine Lung Cancer, Colorectal Cancer, Breast Cancer, Prostate Cancer, Liver
Cancer, Acute Myeloid Leukemia [147–152]

5-Azacitidine Gastric Cancer, Acute Myeloid Leukemia, Germ-Cell Tumor, Esophageal
Cancer, Colon Cancer [153–159]

Zebularine Colon Cancer, Liver Cancer, Pancreatic Cancer, Prostate Cancer,
Medulloblastoma [140–144]

Guadecitabine (SGI-110) Germ-Cell Tumor, Ovarian Cancer, Liver Cancer, Urothelial Cancer [160–163]
5-Fluro-2′ deoxycytidine Urothelial Cancer, Colon Cancer [164,165]

5,6, dihydro 5 azacytidine T-Cell Acute Lymphocytic Leukemia, Acute Myeloid Leukemia [166]
CP-4200 Acute Myeloid Leukemia, Breast Cancer, Colon Cancer [167,168]

Gemcitabine Cervical Cancer, Colorectal Cancer, Pancreatic Cancer, Bladder Cancer [169–174]
Rx3117 Pancreatic Cancer, Bladder Cancer, Lung Cancer, Leukemic Lymphoblasts [175,176]

Hydralazine Prostate Cancer, Solid Cancers, Osteosarcoma [177–179]

6. PARP1 Inhibitors in DNA Hypomethylation of Cancer Cells
6.1. PARP1 Inhibitors

The majority of PARP inhibitors are intended to challenge a binding site on the PARP1
molecule with nicotinamide adenine dinucleotide (NAD+) [180–186]. This approach led to
the identification of NAD-like PARP inhibitors, which target not just PARP but also many
other enzymatic pathways that use NAD+ and other nucleotides as co-factors [25,187–189].
Using certain inhibitors has a negative impact on several NAD+/nucleotide-dependent
enzymatic pathways, resulting in additional deleterious consequences caused by the silenc-
ing of other pathways, while the PARP1 pathway efficiency is reduced. As a result, the
approach is to implement inhibitors based on PARP1’s other functions [190–192].

Accumulating studies have suggested that the engagement of PARP1 with histone 4 (H4)
caused by DSBs activates PARP1 enzymatic activity and enhances Alt-NHEJ [26,193–196]. To
overcome this obstacle, researchers have devised a new technique for blindly screening
a small chemical library for PARP1 inhibitors by focusing on a very specific mechanism
of PARP1 activation [197]. A collection of PARP1 inhibitors has been chosen based on this
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screen, along with their structural categorization. The search found structurally unique
non-NAD-like inhibitors that block PARP1’s role in cancer cells with better effectiveness
and intensity than the conventional PARP1 inhibitors presently employed in treatments,
besides drugs that exhibit structural similarities to NAD+ or existing PARP1 inhibitors.,
Identification of 5F02, a non-NAD-like inhibitor blocks the H4-mediated activity of PARP1
but not PARP2 or Tankyrase-1, and tested successfully against a variety of cancer cells, in-
cluding BRCA1-deficient breast cancer line (MDA-MB-43) [198–201]. Non-NAD-like PARP1
inhibitors have shown effectiveness in targeting androgen-dependent and -independent
pathways of androgen-receptor-signaling activation, in comparison to NAD-like PARP1
inhibitors. It has been experimentally revealed that the presence of esters and methylation
of quaternary ammonium salt is crucial for 5F02′s anticancer action towards prostate-tumor
growth [202]. In addition, researchers looked at the involvement of poly(ADP-ribose)
glycohydrolase (PARG), a PARP1-related regulatory protein, in prostate carcinogenesis. Ac-
cording to the findings, PARG expression is significantly disrupted in prostate cancer cells
(PC cells), which is linked to Cajal-body integrity and localization. Overall, the findings of
our investigation support the use of non-NAD-like PARP1 inhibitors as a new therapeutic
approach for progressive prostate cancer therapy [100]. PARP inhibitors use synthetic lethal-
ity to exploit homologous recombination (HR) deficiency and have emerged as potential
anticancer medicines, particularly for BRCA1 or BRCA2 mutant carriers [203–205].

In Table 2, we summarize a list of significant PARP1 inhibitors, which are currently in
clinical trials for different cancers, including prostate, breast, ovarian, liver cancers (solid)
and lymphomas (non-Hodgkin).

Table 2. Clinical trials of PARP1 inhibitors.

PARP1 Inhibitor Cancer Type NCT Number *

Lynparza/Olaparib Ovarian Cancer
Breast Cancer

NCT04041128 NCT04826198
NCT04774406 NCT03462342
NCT04065269 NCT03150576
NCT04582552 NCT04774406

Cyh33

Ovarian Cancer
Breast Cancer
Solid Tumor

Prostate Cancer
Endometrial Cancer

NCT04586335

Talazoparib Neuroendocrine Tumors NCT05053854

Rp12146

Solid Tumor
Lung Cancer
Breast Cancer

Ovarian Cancer

NCT05002868

Niraparib

Advanced Solid Tumors
(Excluding Prostate Cancer)

Ovarian Cancer
Head And Neck Squamous

Cell Carcinoma

NCT04267939 NCT04826198
NCT04774406 NCT04734665
NCT04681469 NCT04837209

NCT04774406

Idx-1197 Solid Tumors NCT04174716

Talazoparib Breast Cancer NCT03990896
NCT04774406

Rucaparib Solid Tumor NCT04276376
NCT04774406

Veliparib

Solid Tumors
Liver Tumors
Lymphomas

Prostate Cancer

NCT01434316
NCT01618357

* These data were obtained from https://www.clinicaltrials.gov/ (accessed on 30 December 2021). NCT, National
Clinical Trial number.

https://www.clinicaltrials.gov/
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6.2. PARP1 Inhibitors in Reversal of Tumor-Suppressor-Gene Expression
6.2.1. Increase in DNA Hypomethylation by an Increase in TET Activity

PARP inhibitors ablate the poly(ADP-ribosyl)ation of TET. The DNA-hypermethylation-
mediated silencing of TSGs is reversed by the inhibition of poly(ADP-ribosyl)ation activity
of TET, thus enabling 5mC into 5HmC. Poly(ADP-ribosyl)ation stimulates TET1 enzymatic
activity and TET1 activates PARP1 activity independently of DNA breaks (Figure 6) [101].
PARP activity positively regulates TET1 expression by maintaining the DNA hypomethyla-
tion of CpG islands and H3K4 trimethylation [101]. TET1 is abundantly expressed in T-ALL
cells and is required for in vivo human T-ALL cell proliferation. TET1 enzymatic capability
to demethylate DNA, which permits it to retain global 5-hydroxymethylcytosine (5hmC)
marks. To regulate leukemic development, controlling the cell cycle, DNA-repair genes
and T-ALL-related oncogenes are prerequisites. PARP1 enzymes, which are correlated
with increased expression in T-ALL patients, interact with the TET1 promoter to help
create H3K4me3 modifications, thus accelerating transcription. TET1 expression that is
dependent on PARP1 might be inhibited by PARP1 inhibitors such as Olaparib, resulting in
the removal of 5hmC marks, which could lead to the development of a therapy route for
T-ALL cells [206].

6.2.2. Maintenance of DNA Methylation by Poly(ADP-ribosyl)ation of CTCF and DNMT1

CTCF (CCCTC-binding factor) has been reported to be covalently poly(ADP-ribosyl)ated
in vivo [207,208]. CTCF poly(ADP-ribosylation) inhibition stabilizes an upstream chro-
matin barrier and prevents neighboring heterochromatin from migrating into the active
p16 tumor suppressor gene. In cancer development, the epigenetic inactivation of the
p16INK4a tumor suppressor gene is a common target, which is an early marker in breast
carcinogenesis. CTCF binds to this border and the absence of binding substantially corre-
lates with p16 suppression in a variety of cancer cells [94,97]. CTCF binds to poly(ADP-
ribosyl)ated PARP1 and DNMT1 unmethylated target sites, suggesting that PARP activity
is essential to the maintenance of DNA methylation profiles. Loss of PARs, due to overex-
pression of PARG, results in the loss of CTCF and PARP1 DNA binding, as well as de novo
methylation of CTCF-bound CpGs. These findings suggest that CTCF could contribute
to the PARP-mediated safeguarding of certain DNA regions in their unmethylated form.
Poly(ADP-ribosyl)ation, on the other hand, is accountable for maintaining the unmethy-
lated condition of certain CTCF-bound CpGs. CTCF with PARP activity at its DNA target
sites inhibits Dnmt1 functions, reducing de novo methylation of CpG dinucleotides. As a
result of the de-repression of DNMT1 by deficient PARP activity, CTCF DNA targets are
hypermethylated [97,209,210].

7. Combination Therapy of DNA Methyltransferase Inhibitor and PARP Inhibitor

Cancers which are caused by compromised DNA-repair pathways are extremely
sensitive to PARP1 inhibitors [116,211–213]. Acute myeloid leukemia (AML) is a hetero-
geneous cancer with a poor clinical prognosis. Previously, it has been reported that the
BRCA1 expression level is reduced in AML samples [214]. When AML is addressed with
DNA-damaging drugs or radiation therapy, BRCA1 activity is lost, leading to the accu-
mulation of genomic abnormalities and cancer cell death [215]. Novel combinations of
DNMTs and PARP inhibitors could enhance effectiveness; for example, AML patients which
are resistant to chemotherapy are treated with a novel combination therapeutic strategy
that is more effective when combined with decitabine (DNMT inhibitors) [216]. In addi-
tion to demethylating CpG-island gene-promoter regions, it increases poly (ADP-ribose)
polymerase (PARP1) interaction to DNA and strong association to chromatin, limiting
PARP-mediated DNA-repair or -transcription activation, thus downregulating HR DNA
repair and making cancer cells more sensitive to the PARP inhibitor [217]. In AML patients,
high PARP1 expression suggests poor survival. PARP inhibitors in association with histone-
deacetylase inhibitors (SAHA–bendamustine hybrid) give a novel potential cure for AML.
The combination effectively induces cell apoptosis and arrests the cancer cell cycle in the
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G2/M phase, thus delaying the development of AML and prolonging survival [206,218].
AML and acute lymphoblastic leukemia (ALL) have been both reported to have genomic
alternations of PARP1 and compromised DNA-damage-response gene pathways. AML
carries RUNX1–RUNX1T1 (transcription factor involved in the differentiation of hematopoi-
etic stem cells into adult blood cells) fusion genes with functional deficiency in TET2 and
DNMT3A genes [219], while TET1 is highly sensitive to PARP1 inhibitors in ALL patients, as
shown in different clinical studies [206]. By reversion of mutations in BRCA1/2 genes, breast-
and ovarian-cancer cells become resistant to PARP inhibitors [220–222]. Previous studies
have demonstrated that DNMT inhibitors re-sensitize the resistance of breast or ovarian
cells to PARP inhibitors, independent of BRCA1/2 mutation status [223]. Importantly, these
combinations of DNMT and PARP inhibitors suggest that there is a budding and open
pathway to develop a therapy for other cancers which are not completely dependent on
gene mutations in the DNA-damage-repair pathway. The TET2 gene is frequently mutated
in malignant blood diseases (about ~50% in chronic myelomonocytic leukemia, CMML).
In addition to demethylating genes, TET2 has a significant role in DNA repair pathways,
either single-strand breaks (SSB) or double-strand breaks (DSB). TET2 knock-down causes
a decrease in BRCA2 expression, which inhibits HR repair. In combination with a PARP
inhibitor, both SSB and DSB are harmed, cell apoptosis is activated and cell survival is
impeded [224].

8. Perspective and Conclusions

In recent studies on role of PARP1 in DNA dynamics, the extensive cross-talk be-
tween epigenetic pathways, including DNA methylation or demethylation and poly(ADP-
ribosyl)ation of PARP1 itself or other target proteins, is evident. In cancer, both increases in
and losses of DNA methylation are prevalent, but the processes that govern this methyla-
tion equilibrium are unknown. PARP1 plays a central role in DNA dynamics by enabling
and executing DNMT1 or TET1 functions. Both proteins are functionally in contrast with
each other, but their poly(ADP-ribosyl)ation depends on the enzymatical activation of
PARP1 due to DNA damage in cancer cells or other cues. TET1 has been shown to trigger
poly(ADP-ribosyl)ation independently of DNA damage to demethylate mouse primordial
germ cells; this might be due to inhibitory DNMT1 activity or through the transcriptional
up-regulation of the TET1 gene [88].

DNMT1 is a major protein in the hypermethylation of cancer cells [225,226]. In
different cancers, the degree of poly(ADP-ribosyl)ation of PARP1 varies; it also depends on
the role of the related regulatory protein known as PARG1 that reverses the PARP1 function
by removing poly(ADP)ribose moieties from target proteins [227–229]. In prostate cancer,
poly(ADP-ribosyl)ation activity has been observed to increase several folds due to PARG
expression being severally disrupted in these cells [100]. However, the DNA methylation
status of TSGs and their expression in these cells are not known. Sirtuin gene activities
are also disrupted in these cells because of NAD+ scarcity. It would be interesting to study
the chromatin orchestration on TSGs and oncogenes in these cells with or without the use
of PARP1 inhibitors. PARP1 inhibitors have been shown to be useful in the treatment of
androgen-dependent malignancies [230–232].

Apart from inhibiting the enzymatic activity of DNMT1 by noncovalent poly(ADP-
ribosyl)ation [87], poly(ADP-ribosyl)ated PARP1/ARTD1 positively controls DNMT1 ex-
pression [89]. Poly(ADP-ribosyl)ation of TET1 regulates transcriptional TET1 expres-
sion [93]. In contrast to hypermethylation, TNBC is one of the most hypomethylated
cancers [233]. TET1 DNA demethylase is notably overexpressed in roughly 40% of pa-
tients [234]. PARP1 expression has been shown to be significantly increased in TNBC [235].
As a result, the US Food and Drug Administration (FDA) has approved two novel PARP
inhibitors, Lynparza (olaparib) from AstraZeneca and Talzenna (talazoparib) from Pfizer, to
manage metastatic TNBC patients with a BRCA (breast cancer type 1 susceptibility protein)
mutation (or patients suspected to have one).
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PARP1 positively regulates the transcription of genes by auto poly(ADP-ribosyl)ation
and negatively by inhibiting the enzymatic activity of target proteins by covalent modifica-
tion. In other words, PARP1, by binding to promoter regions, suppresses the transcription
of genes, while auto-poly(ribosy)lated PARP1 activates transcription by providing access
to transcription factors [82,236]. Despite the multiple functions of PARP1 in terms of tran-
scription and DNA methylation/demethylation, mice have been shown to grow normally
under PARP1 knockout conditions [237], whereas it has been reported that double knockout
PARP1/PARP2 mice died in early embryogenesis [238]. This suggests that there is redun-
dancy in the function of the PARP gene family, although PARP1 alone poly-ribosylates
~80–90% of target proteins [239].

DNA methylation is a dynamic and multi-regulated process; DNMT1 and TET1 are
directly controlled and Poly(ADP-ribosyl)ation, PARP1, or PARG indirectly affects DNA
methylation. In cancer, this tight regulation is disrupted by the increase or decrease
in enzymatic activities and expression of these genes. In AML and breast cancer cells,
DNA demethylating agents (DNMT inhibitors) improve the lethal action of PARP1 in-
hibitors [240–243]. Both inhibitors’ synergistic impact enhances DNA damage and, as a
result, tumor cytotoxicity [244,245]. Notably, this combined treatment method improves the
PARP1 inhibitor potency in cancer cells. Furthermore, it may be used in the future as part of
combination therapy for cancers in which the DNA-damage-repair mechanism is disrupted.
The transcription reactivation of TSG p16 is indirectly regulated by poly(ADP-ribosyl)ation
of CTCF and the lack of binding substantially correlates with p16 silence in a wide range
of cancers [97]. This merging of the multiple functions of proteins is the research area in
which the epigenetic role of poly(ADP-ribosyl)ation has become increasingly evident; not
only it controls gene transcription/expression but it also affects their biological functions
by affecting their enzymatic activities and modifying the respective pathways. Research
in this direction would aid in obtaining a mechanistic understanding for governing the
epigenetic dynamic alterations which drive biological and cellular processes, including
development and differentiation, and an increased prevalence of illnesses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12030417/s1. Table S1. Dysregulation of DNMTs/TET in
different types of cancer [246–274].
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